

General Relativistic Simulations Three-dimensional of Core-collapse Supernovae

Ernazar Abdikamalov Caltech

Collaborators:

C. D. Ott, R. Haas, P. Mösta, C. Reisswig, E. Schnetter

Talks by Hans-Thomas Janka and Kei Kotake.

• 1D: no explosion in massive stars [Liebendörfer+01, Rampp & Janka 02, etc.]

• 2D: explosions aided by SASI and convection [Blondin & Mezzacappa 03, Müller+12, Fernandez 10, Foglizzo+06, Murphy & Burrows 08, etc.]

• What happens in 3D?
[Burrow+12, Couch+13, Hanke+13, Ott+13, Takiwaki+13, etc.]

Talks by Hans-Thomas Janka and Kei Kotake.

27M_{Sun} progenitor (by Woosley+02)

• Müller+12: strong SASI and weak convection in 2D.

Ott+13: weak SASI and strong convection in 3D.

27M_{Sun} progenitor (by Woosley+02)

• Müller+12: strong SASI and weak convection in 2D.

Ott+13: weak SASI and strong convection in 3D.

Hanke+13: strong SASI in 3D.

Why different results?

Grid perturbations? [Scheck+08]

• Neutrino heating rate? [leakage vs. full transport]

New simulations with minimized grid perturbations

- Evolve in 1D until shock almost stalls (GR1D code by O'Connor & Ott 2010)
- Use the final 1D data for subsequent 3D evolution (no shock crossing of refinement level boundaries)

- 3D evolution: reconstruction
 - PPM near the shock (more dissipation) [Colella & Woodward 84]
 - Enhanced PPM elsewhere (less dissipation) [Colella & Sekora 08]

Models

- Heating factors:
 - 1.05 (strong heating)
 - 0.8 (weak heating)
 - 0.5 (negligible heating)

Different numerical resolutions

Heating $\propto f_{\rm heat} L_{\nu}$

3D Code: Einstein Toolkit

einsteintoolkit.org, stellarcollapse.org

- Infrastructure (Cactus)
- General relativity (CTGamma)
- Hydrodynamics (o/e PPM, GRHydro)
- 3D AMR+multipatch (Carpet+Llama)
- Neutrino leakage/heating (Zelmani)
- LS220 EOS

Results: dependence on heating

Time since bounce: 34.53 ms

Strong heating ↔ convection

Results: dependence on heating

Time since bounce: 30.90 ms

Weak heating ↔ SASI

Strong heating: resolution study

Weak heating: resolution study

Conclusions

3D GR simulations of s27 model

Strong convection with high heating

Strong SASI with weak heating

Resolution dependence